

PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students. Independent Public School

Course	Specialist	Year 11	Test 1 2022

MARKING KEY

Task type:	Response
Time allowed for this	task: 40 mins
Number of questions	: 5
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	32 marks
Task weighting:	10 %

Formula sheet provided: Yes

Note: All part questions worth more than 2 marks require working to obtain full marks.

Question 1

Write down the contrapositive statement and state whether each one is true or false.

(a) If
$$x \ge -3$$
, then $x^2 \ge 9$.

Solution	
If $x^2 < 9$, then $x < -3$.	
This is false. E.g. $x = -10$	
Marking key/Mathematical behaviours	
 ✓ Writes contrapositive 	
✓ States it is false	

(b) If a quadrilateral has four right angles, then it is a square.

Solution	
If a quadrilateral is not a square, then it does not have four right angles.	
This is false as the original statement is false.	
Marking key/Mathematical behaviours	
 ✓ Writes contrapositive 	
✓ States it is false	

(c) If two rectangles are not congruent then they do not have same area. (2 marks)

Solution
If two rectangles have same area, then they are congruent.
This is false as the original statement is false. Example – 6 by 4 and 8 by 3.
Marking key/Mathematical behaviours
✓ Writes contrapositive
✓ States it is false

(6 marks)

(2 marks)

(2 marks)

Perth Modern

(7 marks)

Question 2

(a) Use proof by contraposition to prove that if n^2 is even, then *n* is even, where $n \in \mathbb{Z}$. (4)

Solution
Contrapositive : If <i>n</i> is odd, then n^2 is odd, where $n \in \mathbb{Z}$.
Proof : Since n is odd, $n = 2m + 1, m \in \mathbb{Z}$.
$\therefore n^2 = (2m+1)^2 = 4m^2 + 4m + 1$
$= 2(2m^2 + 2m) + 1 = 2k + 1$, where $k \in \mathbb{Z}$
which is odd.
Therefore, contrapositive is true.
This implies that original statement is true, since contrapositive is true.
Marking key/Mathematical behaviours
 ✓ Writes contrapositive
. Everyopeen as 2m 1 (on odd number) and obtains symposician for 1

- ✓ Expresses n as 2m+1 (an odd number) and obtains expression for n^2
- \checkmark Concludes that the contrapositive statement is true.
- ✓ Deduces that original statement is true.
- (b) Hence or otherwise prove that, if x and y are integers and if $x^2 + y^2$ is even, then x + y is even. (3)

Solution	
Assume that $x, y \in \mathbb{Z}$ and $x^2 + y^2$ is even.	
Then $x^2 + y^2 = 2k$ for $k \in \mathbb{Z}$	
Now $(x + y)^2 = x^2 + y^2 + 2xy = 2k + 2xy = 2(k + xy)$	
Which is even, since $k + xy \in \mathbb{Z}$	
Since $(x + y)^2$ is even, it follows from (a) that $x + y$ is even.	
Marking key/Mathematical behaviours	
✓ Expresses as $x^2 + y^2$ as even number	
✓ Uses $(x + y)^2$ or similar statement	

✓ Proves statement

Question 3

(3 marks)

A set of real numbers is given by { π , $\sqrt{5}$, $0.\overline{36}$, $\sqrt[3]{10}$ }. Identify the rational number and clearly show that it satisfies the definition of a rational number.

Solution
Let $x = 0.\overline{36}$
$100x = 36.\overline{36}$
99x = 36
$x = \frac{36}{99} = \frac{4}{11}$
Marking key/Mathematical behaviours
✓ Chooses $0.\overline{36}$
 Rewrites equation without the recurring decimal
✓ Expresses as a fraction.

(8 marks)

(a) Prove algebraically that if you add the squares of three consecutive numbers and then subtract 2, you always get a multiple of three.
 (4)

Solution	
Let the three consecutive numbers be x, $x + 1$ and $x + 2$.	
$x^{2} + (x + 1)^{2} + (x + 2)^{2} - 2 = 3x^{2} + 6x + 5 - 2$	
$= 3x^2 + 6x + 3 = 3(x^2 + 2x + 1)$	
$= 3(x+1)^2$, which is a multiple of 3	
Marking key/Mathematical behaviours	
✓ Chooses <i>three</i> consecutive numbers correctly	
✓ Expands the sum of 3 consecutive numbers and subtract 2	
 Simplify the above expression with a factor of 3 	

✓ Makes conclusion

(b) Prove that one more than $(n + 1)^2 - (n - 1)^2$ is always odd, where *n* is a positive integer. (4)

Solution
$(n + 1)^2 - (n - 1)^2 = n^2 + 2n + 1 - n^2 + 2n - 1$
=4n
\therefore one more is $4n + 1$
4n is even, since it has a factor of 2, therefore, $4n + 1$ is odd
Marking key/Mathematical behaviours
✓ Correctly expands expression
 ✓ Correctly simplifies
✓ Correctly adds one to get $4n + 1$

✓ Correctly states 4n has a factor of 2 and hence even.

Question 5

(4)

(8 marks)

- (a) Prove that if n^2 is divisible by 3, then n is divisible by 3.
 - (Hint: Prove the contrapositive by considering two cases, when n = 3k + 1 and n = 3k + 2.)

Solution
If n is not divisible by 3 then $n = 3k + 1$ or $n = 3k + 2$
Case 1: If $n = 3k + 1$ then,
$n^{2} = (3k + 1)^{2} = 9k^{2} + 6k + 1 = 3(3k^{2} + 2k) + 1$
Which is not divisible by 3
Case 2: If $n = 3k + 2$ then,
$n^{2} = (3k + 2)^{2} = 9k^{2} + 12k + 4 = 3(3k^{2} + 4k + 1) + 1$
Which is not divisible by 3
Hence, if n^2 is divisible by 3, then n is divisible by 3.
Marking key/Mathematical behaviours
✓ Uses $n = 3k + 1$, when n is not divisible by 3
✓ Expands $n^2 = (3k + 1)^2$ and shows it is not divisible by 3
✓ Expands $n^2 = (3k + 2)^2$ and shows it is not divisible by 3
✓ Makes conclusion

(4)

Solution	
Assume $\sqrt{3}$ is rational,	
i.e. $\exists p, q \in \mathbb{Z}$ such that $\sqrt{3} = \frac{p}{q}$,	
where $q \neq 0$ and p, q have no common factors	
Squaring both sides	
$3 = \frac{p^2}{q^2}$	
$\implies p^2 = 3q^2 \dashrightarrow eq \ 1$	
$\Rightarrow p^2$ is divisible by 3	
\Rightarrow p is divisible by 3, using (a)	
$\implies p = 3k$	
$\implies p^2 = 9k^2 = 3q^2$ using eq 1	
$3k^2 = q^2$	
$\Rightarrow q^2$ is divisible by 3	
\Rightarrow q is divisible by 3, using (a)	
But this implies that both p and q have common factor of 3 which is contradiction. Hence $\sqrt{3}$ is irrational,	
Marking key/Mathematical behaviours	
 ✓ Assumes negation of given statement 	
✓ Expresses as a fraction and rearranges	
 Concludes that both p and q have a common factor 	
 ✓ States original assumption is incorrect 	